Γ.Δ.
1401.58 +0,28%
ACAG
-0,37%
5.35
BOCHGR
-0,46%
4.36
CENER
+1,94%
8.4
CNLCAP
0,00%
7.25
DIMAND
-1,20%
8.2
NOVAL
+1,54%
2.31
OPTIMA
-0,31%
12.72
TITC
+1,48%
37.65
ΑΑΑΚ
0,00%
4.48
ΑΒΑΞ
+1,31%
1.396
ΑΒΕ
+1,32%
0.46
ΑΔΜΗΕ
-0,21%
2.345
ΑΚΡΙΤ
0,00%
0.685
ΑΛΜΥ
0,00%
3.66
ΑΛΦΑ
-2,05%
1.5305
ΑΝΔΡΟ
-0,62%
6.38
ΑΡΑΙΓ
+1,43%
9.58
ΑΣΚΟ
-0,39%
2.53
ΑΣΤΑΚ
-0,29%
6.88
ΑΤΕΚ
0,00%
0.426
ΑΤΡΑΣΤ
-0,23%
8.74
ΑΤΤ
+4,07%
0.614
ΑΤΤΙΚΑ
+1,40%
2.17
ΒΙΟ
+0,39%
5.19
ΒΙΟΚΑ
+0,86%
1.755
ΒΙΟΣΚ
-0,73%
1.365
ΒΙΟΤ
0,00%
0.294
ΒΙΣ
0,00%
0.144
ΒΟΣΥΣ
0,00%
2.04
ΓΕΒΚΑ
+1,15%
1.315
ΓΕΚΤΕΡΝΑ
+1,82%
17.9
ΔΑΑ
+0,13%
7.99
ΔΑΙΟΣ
-1,64%
3.6
ΔΕΗ
-0,85%
11.65
ΔΟΜΙΚ
-1,82%
2.7
ΔΟΥΡΟ
0,00%
0.25
ΔΡΟΜΕ
-2,03%
0.29
ΕΒΡΟΦ
+2,17%
1.41
ΕΕΕ
+1,93%
33.74
ΕΚΤΕΡ
+1,54%
1.446
ΕΛΒΕ
0,00%
4.66
ΕΛΙΝ
+0,51%
1.98
ΕΛΛ
-1,87%
13.1
ΕΛΛΑΚΤΩΡ
+0,74%
1.632
ΕΛΠΕ
-1,84%
6.675
ΕΛΣΤΡ
+1,49%
2.05
ΕΛΤΟΝ
+2,80%
1.838
ΕΛΧΑ
0,00%
1.8
ΕΠΙΛΚ
0,00%
0.132
ΕΣΥΜΒ
0,00%
1.13
ΕΤΕ
-1,59%
6.924
ΕΥΑΠΣ
+0,32%
3.14
ΕΥΔΑΠ
0,00%
5.75
ΕΥΡΩΒ
-0,20%
2.036
ΕΧΑΕ
-0,23%
4.3
ΙΑΤΡ
+0,98%
1.54
ΙΚΤΙΝ
-0,65%
0.3055
ΙΛΥΔΑ
-0,29%
1.74
ΙΝΚΑΤ
+1,28%
4.75
ΙΝΛΙΦ
-0,23%
4.28
ΙΝΛΟΤ
+1,14%
0.89
ΙΝΤΕΚ
+0,53%
5.67
ΙΝΤΕΡΚΟ
0,00%
2.46
ΙΝΤΕΤ
-4,04%
0.974
ΙΝΤΚΑ
+1,15%
2.65
ΚΑΡΕΛ
0,00%
336
ΚΕΚΡ
0,00%
1.17
ΚΕΠΕΝ
0,00%
2.22
ΚΛΜ
-2,03%
1.45
ΚΟΡΔΕ
+3,80%
0.41
ΚΟΥΑΛ
+0,99%
1.02
ΚΟΥΕΣ
-0,72%
5.52
ΚΡΙ
-0,35%
14.3
ΚΤΗΛΑ
0,00%
1.7
ΚΥΡΙΟ
+0,22%
0.924
ΛΑΒΙ
-0,96%
0.719
ΛΑΜΔΑ
-0,14%
7.27
ΛΑΜΨΑ
0,00%
37.4
ΛΑΝΑΚ
-3,53%
0.82
ΛΕΒΚ
0,00%
0.256
ΛΕΒΠ
0,00%
0.34
ΛΟΓΟΣ
0,00%
1.25
ΛΟΥΛΗ
-0,37%
2.73
ΜΑΘΙΟ
-8,62%
0.594
ΜΕΒΑ
0,00%
3.62
ΜΕΝΤΙ
+0,50%
2.02
ΜΕΡΚΟ
0,00%
41
ΜΙΓ
-1,82%
2.97
ΜΙΝ
0,00%
0.51
ΜΛΣ
0,00%
0.57
ΜΟΗ
-0,62%
19.2
ΜΟΝΤΑ
-1,32%
3.75
ΜΟΤΟ
-0,61%
2.45
ΜΟΥΖΚ
0,00%
0.65
ΜΠΕΛΑ
+1,90%
24.66
ΜΠΛΕΚΕΔΡΟΣ
+0,27%
3.7
ΜΠΡΙΚ
-0,48%
2.08
ΜΠΤΚ
0,00%
0.62
ΜΥΤΙΛ
+0,96%
31.7
ΝΑΚΑΣ
0,00%
2.92
ΝΑΥΠ
0,00%
0.83
ΞΥΛΚ
+0,79%
0.256
ΞΥΛΠ
0,00%
0.398
ΟΛΘ
+0,48%
20.9
ΟΛΠ
-0,50%
29.85
ΟΛΥΜΠ
-2,17%
2.25
ΟΠΑΠ
+3,27%
15.8
ΟΡΙΛΙΝΑ
-0,13%
0.79
ΟΤΕ
+1,33%
15.21
ΟΤΟΕΛ
-1,37%
10.1
ΠΑΙΡ
-2,26%
0.952
ΠΑΠ
+2,15%
2.38
ΠΕΙΡ
-1,13%
3.589
ΠΕΡΦ
+1,89%
5.38
ΠΕΤΡΟ
+1,03%
7.86
ΠΛΑΘ
-0,13%
3.96
ΠΛΑΚΡ
0,00%
13.9
ΠΡΔ
0,00%
0.25
ΠΡΕΜΙΑ
+0,17%
1.174
ΠΡΟΝΤΕΑ
0,00%
6.2
ΠΡΟΦ
+0,59%
5.13
ΡΕΒΟΙΛ
+0,95%
1.595
ΣΑΡ
-0,92%
10.72
ΣΑΡΑΝ
0,00%
1.07
ΣΑΤΟΚ
0,00%
0.028
ΣΕΝΤΡ
-1,21%
0.327
ΣΙΔΜΑ
-0,33%
1.525
ΣΠΕΙΣ
+0,71%
5.64
ΣΠΙ
+2,78%
0.518
ΣΠΥΡ
0,00%
0.127
ΤΕΝΕΡΓ
-0,05%
19.8
ΤΖΚΑ
+0,71%
1.42
ΤΡΑΣΤΟΡ
0,00%
1.06
ΤΡΕΣΤΑΤΕΣ
0,00%
1.62
ΥΑΛΚΟ
0,00%
0.162
ΦΙΕΡ
0,00%
0.359
ΦΛΕΞΟ
0,00%
8
ΦΡΙΓΟ
-3,64%
0.212
ΦΡΛΚ
-0,56%
3.55
ΧΑΙΔΕ
-8,20%
0.56

Καρκίνος μαστού: Προσυμπτωματικός έλεγχος με τη βοήθεια ΑΙ

Η χρήση τεχνητής νοημοσύνης (AI) για τη συμπλήρωση των αξιολογήσεων των ακτινολόγων για τις μαστογραφίες μπορεί να βελτιώσει τον προσυμπτωματικό έλεγχο του καρκίνου του μαστού μειώνοντας τα ψευδώς θετικά ή βρίσκοντας περιπτώσεις καρκίνου, σύμφωνα με μελέτη ερευνητών της Ιατρικής Σχολής του Πανεπιστημίου της Ουάσιγκτον.

Οι ερευνητές ανέπτυξαν έναν αλγόριθμο που εντόπισε φυσιολογικές μαστογραφίες με πολύ υψηλή ευαισθησία. Στη συνέχεια έκαναν μια προσομοίωση σε δεδομένα ασθενών για να δουν τι θα είχε συμβεί εάν όλες οι μαστογραφίες πολύ χαμηλού κινδύνου είχαν αφαιρεθεί από τους ακτινολόγους, αφήνοντας τους γιατρούς να επικεντρωθούν στις πιο αμφισβητήσιμες σαρώσεις.

Η προσομοίωση αποκάλυψε ότι λιγότεροι άνθρωποι θα είχαν κληθεί για πρόσθετες εξετάσεις, αλλά ότι θα είχε εντοπιστεί ο ίδιος αριθμός περιπτώσεων καρκίνου.

«Εσφαλμένα θετικά είναι όταν καλείς έναν ασθενή πίσω για πρόσθετη εξέταση και αποδεικνύεται καλοήθης», εξήγησε ο ανώτερος συγγραφέας της μελέτης Dr. Richard L. Wahl, MD, καθηγητής ακτινολογίας στο Mallinckrodt Institute of Radiology (MIR) του Πανεπιστημίου της Ουάσιγκτον και καθηγητής ακτινολογικής ογκολογίας.

«Αυτό προκαλεί πολύ περιττό άγχος στους ασθενείς και καταναλώνει ιατρικούς πόρους. Αυτή η μελέτη προσομοίωσης έδειξε ότι οι μαστογραφίες πολύ χαμηλού κινδύνου μπορούν να αναγνωριστούν αξιόπιστα από την τεχνητή νοημοσύνη για τη μείωση των ψευδώς θετικών και τη βελτίωση των ροών εργασίας». Η μελέτη δημοσιεύεται στο περιοδικό Radiology: Artificial Intelligence.

Ο Dr. Wahl συνεργάστηκε στο παρελθόν με το Whiterabbit.ai σε έναν αλγόριθμο για να βοηθήσει τους ακτινολόγους να κρίνουν την πυκνότητα του μαστού στις μαστογραφίες ώστε να εντοπίσουν άτομα που θα μπορούσαν να ωφεληθούν από πρόσθετο ή εναλλακτικό έλεγχο. Αυτός ο αλγόριθμος έλαβε έγκριση από τον Οργανισμό Τροφίμων και Φαρμάκων (FDA) το 2020 και πλέον διατίθεται στην αγορά από το Whiterabbit.ai ως WRDensity.

Σε αυτή τη μελέτη, ο Dr. Wahl και οι συνεργάτες του στο Whiterabbit.ai ανέπτυξαν έναν τρόπο αποκλεισμού του καρκίνου χρησιμοποιώντας τεχνητή νοημοσύνη για την αξιολόγηση των μαστογραφιών. Εκπαίδευσαν το μοντέλο AI σε 123.248 2D ψηφιακές μαστογραφίες (οι οποίες περιείχαν 6.161 που έδειχναν καρκίνο) συλλέχθηκαν και διαβάστηκαν σε μεγάλο βαθμό από ακτινολόγους του Πανεπιστημίου της Ουάσιγκτον. Στη συνέχεια, επικύρωσαν και δοκίμασαν το μοντέλο AI σε τρία ανεξάρτητα σετ μαστογραφιών, δύο από ιδρύματα στις ΗΠΑ και ένα στο Ηνωμένο Βασίλειο.

Πρώτα, οι ερευνητές κατάλαβαν τι έκαναν οι γιατροί: πόσοι ασθενείς κλήθηκαν πίσω για δευτερογενή έλεγχο και βιοψίες, τα αποτελέσματα αυτών των δοκιμών και τον τελικό προσδιορισμό σε κάθε περίπτωση.

Στη συνέχεια, εφάρμοσαν τεχνητή νοημοσύνη στα σύνολα δεδομένων για να δουν τι θα ήταν διαφορετικό εάν η τεχνητή νοημοσύνη είχε χρησιμοποιηθεί για την αφαίρεση αρνητικών μαστογραφιών στις αρχικές αξιολογήσεις και οι γιατροί είχαν ακολουθήσει τυπικές διαγνωστικές διαδικασίες για να αξιολογήσουν τα υπόλοιπα.

Πιο συγκεκριμένα, εξετάστηκε το μεγαλύτερο σύνολο δεδομένων, το οποίο περιείχε 11.592 μαστογραφίες. Όταν κλιμακώθηκε σε 10.000 μαστογραφίες (για να γίνουν τα μαθηματικά πιο απλά για τους σκοπούς της προσομοίωσης), η τεχνητή νοημοσύνη προσδιόρισε το 34,9% ως αρνητικό. Εάν αυτές οι 3.485 αρνητικές μαστογραφίες είχαν αφαιρεθεί από τον φόρτο εργασίας, οι ακτινολόγοι θα είχαν κάνει 897 επανακλήσεις για διαγνωστικές εξετάσεις, μείωση 23,7% από τις 1.159 που έκαναν στην πραγματικότητα.

Στο επόμενο βήμα, 190 άτομα θα είχαν κληθεί για δεύτερη φορά για βιοψίες, μείωση 6,9% από 200 στην πραγματικότητα. Στο τέλος της διαδικασίας, τόσο οι προσεγγίσεις αποκλεισμού της τεχνητής νοημοσύνης όσο και οι πραγματικές προσεγγίσεις τυπικής φροντίδας εντόπισαν τους ίδιους 55 καρκίνους.

Με άλλα λόγια, αυτή η μελέτη της τεχνητής νοημοσύνης υποδηλώνει ότι από τους 10.000 ανθρώπους που υποβλήθηκαν σε αρχικές μαστογραφίες, οι 262 θα μπορούσαν να είχαν αποφύγει τις διαγνωστικές εξετάσεις και οι 10 θα μπορούσαν να είχαν αποφύγει τις βιοψίες, χωρίς να χαθεί καμία περίπτωση καρκίνου.

«Στο τέλος της ημέρας, πιστεύουμε σε έναν κόσμο όπου ο γιατρός είναι ο υπερήρωας που βρίσκει τον καρκίνο και βοηθά τους ασθενείς να πλοηγηθούν στο ταξίδι τους μπροστά», δήλωσε ο συν-συγγραφέας Dr. Jason Su, συνιδρυτής και επικεφαλής τεχνολογίας στο Whiterabbit.ai. «Ο τρόπος με τον οποίο τα συστήματα τεχνητής νοημοσύνης μπορούν να βοηθήσουν είναι να έχουν έναν υποστηρικτικό ρόλο. Με την ακριβή αξιολόγηση των αρνητικών, μπορεί να βοηθήσει στην απομάκρυνση του «σανού από τα άχυρα», ώστε οι γιατροί να βρίσκουν τη «βελόνα» πιο εύκολα.

«Αυτή η μελέτη δείχνει ότι η τεχνητή νοημοσύνη μπορεί να είναι δυνητικά πολύ ακριβής στον εντοπισμό αρνητικών εξετάσεων. Το πιο σημαντικό: τα αποτελέσματα έδειξαν ότι η αυτοματοποίηση της ανίχνευσης των αρνητικών μπορεί επίσης να οδηγήσει σε τεράστιο όφελος στη μείωση των ψευδώς θετικών χωρίς αλλαγή του ποσοστού ανίχνευσης καρκίνου».

Google News icon
Ακολουθήστε το Powergame.gr στο Google News για άμεση και έγκυρη οικονομική ενημέρωση!