Γ.Δ.
1452.5 -0,26%
ACAG
+0,52%
5.84
BOCHGR
0,00%
4.54
CENER
-0,11%
9.11
CNLCAP
-2,68%
7.25
DIMAND
-2,25%
7.82
NOVAL
-0,65%
2.285
OPTIMA
-2,33%
12.56
TITC
-1,00%
39.6
ΑΑΑΚ
0,00%
4.48
ΑΒΑΞ
-2,23%
1.494
ΑΒΕ
+0,22%
0.449
ΑΔΜΗΕ
0,00%
2.6
ΑΚΡΙΤ
0,00%
0.69
ΑΛΜΥ
-0,87%
4.56
ΑΛΦΑ
-0,47%
1.5795
ΑΝΔΡΟ
0,00%
6.4
ΑΡΑΙΓ
-1,66%
10.07
ΑΣΚΟ
0,00%
2.83
ΑΣΤΑΚ
-3,51%
7.14
ΑΤΕΚ
0,00%
0.426
ΑΤΡΑΣΤ
0,00%
8.76
ΑΤΤ
0,00%
0.67
ΑΤΤΙΚΑ
-1,35%
2.19
ΒΙΟ
-3,30%
5.27
ΒΙΟΚΑ
-0,27%
1.865
ΒΙΟΣΚ
-0,62%
1.6
ΒΙΟΤ
-3,01%
0.258
ΒΙΣ
0,00%
0.144
ΒΟΣΥΣ
0,00%
2.18
ΓΕΒΚΑ
0,00%
1.39
ΓΕΚΤΕΡΝΑ
-1,19%
18.2
ΔΑΑ
0,00%
8
ΔΑΙΟΣ
0,00%
3.58
ΔΕΗ
-0,60%
11.6
ΔΟΜΙΚ
-4,32%
2.77
ΔΟΥΡΟ
0,00%
0.25
ΔΡΟΜΕ
0,00%
0.308
ΕΒΡΟΦ
-1,96%
1.755
ΕΕΕ
-0,74%
32.18
ΕΚΤΕΡ
-1,02%
1.75
ΕΛΒΕ
0,00%
4.78
ΕΛΙΝ
+2,83%
2.18
ΕΛΛ
+1,75%
14.5
ΕΛΛΑΚΤΩΡ
0,00%
1.938
ΕΛΠΕ
+0,27%
7.3
ΕΛΣΤΡ
+0,97%
2.08
ΕΛΤΟΝ
-1,07%
1.856
ΕΛΧΑ
-0,74%
1.88
ΕΠΙΛΚ
0,00%
0.132
ΕΣΥΜΒ
0,00%
1.185
ΕΤΕ
+0,80%
7.84
ΕΥΑΠΣ
-0,62%
3.21
ΕΥΔΑΠ
0,00%
5.8
ΕΥΡΩΒ
+0,63%
2.25
ΕΧΑΕ
-1,54%
4.47
ΙΑΤΡ
-3,23%
1.5
ΙΚΤΙΝ
-0,30%
0.334
ΙΛΥΔΑ
-0,25%
1.975
ΙΝΚΑΤ
+1,05%
4.83
ΙΝΛΙΦ
-0,21%
4.75
ΙΝΛΟΤ
+2,46%
0.998
ΙΝΤΕΚ
+0,17%
5.86
ΙΝΤΕΡΚΟ
+2,50%
2.46
ΙΝΤΕΤ
0,00%
1.05
ΙΝΤΚΑ
-0,35%
2.86
ΚΑΡΕΛ
-1,18%
336
ΚΕΚΡ
+1,26%
1.21
ΚΕΠΕΝ
0,00%
2.22
ΚΛΜ
0,00%
1.5
ΚΟΡΔΕ
-0,46%
0.429
ΚΟΥΑΛ
+1,72%
1.18
ΚΟΥΕΣ
+0,17%
5.86
ΚΡΙ
+0,33%
15.35
ΚΤΗΛΑ
0,00%
1.91
ΚΥΡΙΟ
0,00%
0.99
ΛΑΒΙ
-0,27%
0.737
ΛΑΜΔΑ
0,00%
7.17
ΛΑΜΨΑ
0,00%
37
ΛΑΝΑΚ
0,00%
0.9
ΛΕΒΚ
0,00%
0.27
ΛΕΒΠ
0,00%
0.26
ΛΟΓΟΣ
-3,80%
1.52
ΛΟΥΛΗ
-0,69%
2.86
ΜΑΘΙΟ
0,00%
0.61
ΜΕΒΑ
+1,79%
3.99
ΜΕΝΤΙ
-1,86%
2.11
ΜΕΡΚΟ
0,00%
40
ΜΙΓ
-1,21%
2.855
ΜΙΝ
0,00%
0.494
ΜΛΣ
0,00%
0.57
ΜΟΗ
+0,78%
20.56
ΜΟΝΤΑ
-1,11%
3.56
ΜΟΤΟ
-0,37%
2.69
ΜΟΥΖΚ
0,00%
0.605
ΜΠΕΛΑ
-0,79%
25.18
ΜΠΛΕΚΕΔΡΟΣ
+0,27%
3.75
ΜΠΡΙΚ
+0,93%
2.16
ΜΠΤΚ
0,00%
0.55
ΜΥΤΙΛ
-1,18%
33.4
ΝΑΚΑΣ
0,00%
2.82
ΝΑΥΠ
+0,24%
0.822
ΞΥΛΚ
0,00%
0.271
ΞΥΛΠ
0,00%
0.334
ΟΛΘ
0,00%
22
ΟΛΠ
-0,17%
30.05
ΟΛΥΜΠ
+1,30%
2.34
ΟΠΑΠ
-0,25%
15.69
ΟΡΙΛΙΝΑ
+0,63%
0.798
ΟΤΕ
+0,61%
14.85
ΟΤΟΕΛ
-1,33%
10.36
ΠΑΙΡ
+3,33%
0.992
ΠΑΠ
0,00%
2.37
ΠΕΙΡ
-1,04%
3.891
ΠΕΡΦ
+0,19%
5.39
ΠΕΤΡΟ
-1,20%
8.24
ΠΛΑΘ
-0,25%
3.92
ΠΛΑΚΡ
+2,08%
14.7
ΠΡΔ
+8,70%
0.25
ΠΡΕΜΙΑ
+1,53%
1.198
ΠΡΟΝΤΕΑ
-5,07%
6.55
ΠΡΟΦ
+0,77%
5.24
ΡΕΒΟΙΛ
0,00%
1.71
ΣΑΡ
+0,19%
10.74
ΣΑΡΑΝ
0,00%
1.07
ΣΑΤΟΚ
0,00%
0.028
ΣΕΝΤΡ
-0,30%
0.334
ΣΙΔΜΑ
+1,61%
1.575
ΣΠΕΙΣ
+1,71%
5.94
ΣΠΙ
+0,39%
0.52
ΣΠΥΡ
0,00%
0.138
ΤΕΝΕΡΓ
+0,96%
20.02
ΤΖΚΑ
-1,67%
1.475
ΤΡΑΣΤΟΡ
0,00%
1.05
ΤΡΕΣΤΑΤΕΣ
-0,12%
1.636
ΥΑΛΚΟ
0,00%
0.162
ΦΙΕΡ
0,00%
0.359
ΦΛΕΞΟ
-0,61%
8.1
ΦΡΙΓΟ
+4,55%
0.23
ΦΡΛΚ
-1,86%
3.7
ΧΑΙΔΕ
+1,69%
0.6

Google: Με AI ανιχνεύει παθήσεις των πνευμόνων

Μια ομάδα ερευνητών τεχνητής νοημοσύνης στο Google Research, σε συνεργασία με ένα ζευγάρι συναδέλφων από το Κέντρο Έρευνας Λοιμωδών Νοσημάτων στη Ζάμπια, ανέπτυξε ένα σύστημα μηχανικής μάθησης που στοχεύει στη διάγνωση παθήσεων των πνευμόνων με βάση τους ήχους του βήχα.

Στη μελέτη της, η ομάδα χρησιμοποίησε βίντεο του YouTube για να εκπαιδεύσει το σύστημα. Η ομάδα της Google ονόμασε το νέο της σύστημα Health Acoustic Representations (HeAR).

Άρχισαν να εργάζονται σ’ αυτό, αφού οι εργαζόμενοι στον τομέα της υγείας ανέφεραν ότι είχαν μάθει με την πάροδο του χρόνου, κατά τη διάρκεια της πανδημίας, ότι συχνά μπορούσαν να καταλάβουν ποιοι ασθενείς είχαν COVID-19 από τον ήχο του βήχα τους.

Άλλοι ερευνητές εργάζονται σε παρόμοιες προσπάθειες, ελπίζοντας να αναπτύξουν συστήματα που θα μπορούσαν να ανιχνεύσουν μια μεγάλη ποικιλία ασθενειών με βάση τον ήχο του βήχα.

Η Google ακολούθησε διαφορετική προσέγγιση στον εντοπισμό ασθενειών από τις άλλες ομάδες. Αντί να εκπαιδεύσουν ένα σύστημα AI χρησιμοποιώντας ηχογραφήσεις με ετικέτες που προσδιορίζουν μια δεδομένη ασθένεια, χρησιμοποίησαν μια προσέγγιση παρόμοια με το ChatGPT.

Στο σύστημά τους, ένας μεγάλος αριθμός ηχογραφημένων ανθρώπινων ήχων από το YouTube, όπως κανονική αναπνοή, λαχάνιασμα ή βήχας, μετατράπηκαν σε φασματογράμματα.

Στη συνέχεια, η ομάδα μπλόκαρε ορισμένα μέρη του καθενός και ώθησε την τεχνητή νοημοσύνη να βρει το τμήμα που λείπει. Το αποτέλεσμα ήταν ένα μοντέλο θεμελίωσης, το οποίο, σημειώνουν οι ερευνητές, θα μπορούσε να προσαρμοστεί για χρήση σε μια μεγάλη ποικιλία εργασιών.

Στην περίπτωσή τους, οι ερευνητές το χρησιμοποίησαν για να μάθουν να ανιχνεύουν παθήσεις όπως φυματίωση ή COVID-19. Στη συνέχεια χρησιμοποίησαν μια τυπική κλίμακα για να συγκρίνουν την ακρίβεια του HeAR με τυχαίες εικασίες.

Βρήκαν ότι σημείωσε 0,739 σε ένα σύνολο δεδομένων και 0,645 σε ένα άλλο για την ανίχνευση COVID-19 και 0,739 κατά μέσο όρο για φυματίωση, κάτι που είναι καλύτερο από τα αποτελέσματα που έχουν ληφθεί από άλλα συστήματα.

Η ερευνητική ομάδα αναγνωρίζει ότι απαιτείται πολύ περισσότερη δουλειά, αλλά πιστεύει ότι η ακουστική εξέταση μπορεί κάποια μέρα να φτάσει στα ιατρεία, δίνοντάς τους ένα ακόμη εργαλείο για τη διάγνωση ασθενών με πνευμονικές παθήσεις.

Google News icon
Ακολουθήστε το Powergame.gr στο Google News για άμεση και έγκυρη οικονομική ενημέρωση!