Γ.Δ.
1618.16 +0,04%
ACAG
-0,32%
6.16
AEM
+0,35%
4.545
AKTR
-0,55%
5.45
BOCHGR
-1,11%
5.34
CENER
+0,32%
9.5
CNLCAP
0,00%
7.25
DIMAND
+0,49%
8.24
EVR
+0,58%
1.745
NOVAL
+0,20%
2.54
OPTIMA
-0,43%
14.04
TITC
-0,83%
41.65
ΑΑΑΚ
0,00%
5
ΑΒΑΞ
+2,27%
2.25
ΑΒΕ
-3,60%
0.429
ΑΔΜΗΕ
-0,18%
2.815
ΑΚΡΙΤ
0,00%
0.75
ΑΛΜΥ
+1,29%
4.31
ΑΛΦΑ
+1,34%
1.89
ΑΝΔΡΟ
-0,31%
6.5
ΑΡΑΙΓ
+1,51%
11.4
ΑΣΚΟ
+0,63%
3.22
ΑΣΤΑΚ
-0,27%
7.28
ΑΤΕΚ
+2,72%
1.51
ΑΤΡΑΣΤ
0,00%
8.68
ΑΤΤ
-0,57%
0.698
ΑΤΤΙΚΑ
-1,64%
2.4
ΒΙΟ
-0,17%
5.83
ΒΙΟΚΑ
-0,26%
1.925
ΒΙΟΣΚ
-0,64%
1.55
ΒΙΟΤ
0,00%
0.27
ΒΙΣ
0,00%
0.144
ΒΟΣΥΣ
+3,33%
2.48
ΓΕΒΚΑ
-0,63%
1.57
ΓΕΚΤΕΡΝΑ
0,00%
18.9
ΔΑΑ
-1,05%
8.312
ΔΑΙΟΣ
0,00%
3.42
ΔΕΗ
-0,67%
13.33
ΔΟΜΙΚ
-0,35%
2.82
ΔΟΥΡΟ
0,00%
0.25
ΔΡΟΜΕ
+4,11%
0.38
ΕΒΡΟΦ
+1,30%
1.955
ΕΕΕ
-0,76%
39.2
ΕΚΤΕΡ
-3,96%
2.06
ΕΛΒΕ
+2,80%
5.5
ΕΛΙΝ
-0,91%
2.18
ΕΛΛ
-1,33%
14.8
ΕΛΛΑΚΤΩΡ
-2,37%
2.265
ΕΛΠΕ
+0,82%
8.04
ΕΛΣΤΡ
+2,11%
2.42
ΕΛΤΟΝ
+0,87%
1.858
ΕΛΧΑ
-0,46%
2.165
ΕΠΙΛΚ
0,00%
0.132
ΕΣΥΜΒ
-1,75%
1.125
ΕΤΕ
+1,50%
8.648
ΕΥΑΠΣ
+0,29%
3.45
ΕΥΔΑΠ
+0,33%
6.06
ΕΥΡΩΒ
-0,72%
2.484
ΕΧΑΕ
-1,00%
4.95
ΙΑΤΡ
-0,49%
2.05
ΙΚΤΙΝ
-1,10%
0.36
ΙΛΥΔΑ
+0,86%
1.765
ΙΝΛΙΦ
-0,21%
4.85
ΙΝΛΟΤ
-1,65%
1.072
ΙΝΤΕΚ
0,00%
5.9
ΙΝΤΕΤ
-2,18%
1.12
ΙΝΤΚΑ
-1,52%
3.23
ΚΑΡΕΛ
0,00%
326
ΚΕΚΡ
-3,41%
1.275
ΚΕΠΕΝ
0,00%
1.94
ΚΟΡΔΕ
+1,77%
0.459
ΚΟΥΑΛ
-1,95%
1.31
ΚΟΥΕΣ
+0,64%
6.3
ΚΡΙ
-0,60%
16.5
ΚΤΗΛΑ
-1,00%
1.98
ΚΥΡΙΟ
+0,49%
1.02
ΛΑΒΙ
-0,73%
0.812
ΛΑΜΔΑ
-0,14%
6.99
ΛΑΜΨΑ
0,00%
37
ΛΑΝΑΚ
+4,76%
1.1
ΛΕΒΚ
0,00%
0.23
ΛΕΒΠ
+4,42%
0.236
ΛΟΓΟΣ
0,00%
1.75
ΛΟΥΛΗ
-0,29%
3.4
ΜΑΘΙΟ
0,00%
0.802
ΜΕΒΑ
+1,53%
3.98
ΜΕΝΤΙ
-2,17%
2.25
ΜΕΡΚΟ
+3,13%
39.6
ΜΙΓ
0,00%
2.865
ΜΙΝ
0,00%
0.492
ΜΟΗ
+0,36%
22.4
ΜΟΝΤΑ
-0,53%
3.78
ΜΟΤΟ
-0,18%
2.825
ΜΟΥΖΚ
0,00%
0.63
ΜΠΕΛΑ
+0,36%
27.94
ΜΠΛΕΚΕΔΡΟΣ
0,00%
3.81
ΜΠΡΙΚ
-0,82%
2.42
ΜΠΤΚ
+5,13%
0.615
ΜΥΤΙΛ
+1,71%
36.96
ΝΑΚΑΣ
-1,88%
3.14
ΝΑΥΠ
+0,49%
0.828
ΞΥΛΚ
-1,87%
0.262
ΞΥΛΠ
+10,00%
0.396
ΟΛΘ
+1,79%
28.5
ΟΛΠ
+1,36%
33.65
ΟΛΥΜΠ
0,00%
2.6
ΟΠΑΠ
-1,44%
17.14
ΟΡΙΛΙΝΑ
-1,23%
0.8
ΟΤΕ
-0,40%
15
ΟΤΟΕΛ
-0,36%
11.06
ΠΑΙΡ
-4,29%
1.005
ΠΑΠ
-1,14%
2.61
ΠΕΙΡ
+1,26%
4.808
ΠΕΡΦ
-1,28%
5.4
ΠΕΤΡΟ
-0,99%
8
ΠΛΑΘ
-0,25%
4.05
ΠΛΑΚΡ
0,00%
15.2
ΠΡΔ
-0,76%
0.262
ΠΡΕΜΙΑ
-0,16%
1.28
ΠΡΟΝΤΕΑ
-4,10%
5.85
ΠΡΟΦ
+1,74%
5.27
ΡΕΒΟΙΛ
-0,28%
1.755
ΣΑΡ
-1,72%
12.58
ΣΑΡΑΝ
0,00%
1.07
ΣΑΤΟΚ
0,00%
0.028
ΣΕΝΤΡ
0,00%
0.354
ΣΙΔΜΑ
-0,63%
1.565
ΣΠΕΙΣ
-1,40%
5.64
ΣΠΙ
+4,65%
0.63
ΣΠΥΡ
0,00%
0.151
ΤΕΝΕΡΓ
0,00%
20
ΤΖΚΑ
0,00%
1.48
ΤΡΑΣΤΟΡ
0,00%
1.3
ΤΡΕΣΤΑΤΕΣ
-0,95%
1.662
ΥΑΛΚΟ
0,00%
0.162
ΦΛΕΞΟ
0,00%
7.7
ΦΡΙΓΟ
+9,17%
0.238
ΦΡΛΚ
-1,27%
4.28
ΧΑΙΔΕ
+1,27%
0.8

Google: Με AI ανιχνεύει παθήσεις των πνευμόνων

Μια ομάδα ερευνητών τεχνητής νοημοσύνης στο Google Research, σε συνεργασία με ένα ζευγάρι συναδέλφων από το Κέντρο Έρευνας Λοιμωδών Νοσημάτων στη Ζάμπια, ανέπτυξε ένα σύστημα μηχανικής μάθησης που στοχεύει στη διάγνωση παθήσεων των πνευμόνων με βάση τους ήχους του βήχα.

Στη μελέτη της, η ομάδα χρησιμοποίησε βίντεο του YouTube για να εκπαιδεύσει το σύστημα. Η ομάδα της Google ονόμασε το νέο της σύστημα Health Acoustic Representations (HeAR).

Άρχισαν να εργάζονται σ’ αυτό, αφού οι εργαζόμενοι στον τομέα της υγείας ανέφεραν ότι είχαν μάθει με την πάροδο του χρόνου, κατά τη διάρκεια της πανδημίας, ότι συχνά μπορούσαν να καταλάβουν ποιοι ασθενείς είχαν COVID-19 από τον ήχο του βήχα τους.

Άλλοι ερευνητές εργάζονται σε παρόμοιες προσπάθειες, ελπίζοντας να αναπτύξουν συστήματα που θα μπορούσαν να ανιχνεύσουν μια μεγάλη ποικιλία ασθενειών με βάση τον ήχο του βήχα.

Η Google ακολούθησε διαφορετική προσέγγιση στον εντοπισμό ασθενειών από τις άλλες ομάδες. Αντί να εκπαιδεύσουν ένα σύστημα AI χρησιμοποιώντας ηχογραφήσεις με ετικέτες που προσδιορίζουν μια δεδομένη ασθένεια, χρησιμοποίησαν μια προσέγγιση παρόμοια με το ChatGPT.

Στο σύστημά τους, ένας μεγάλος αριθμός ηχογραφημένων ανθρώπινων ήχων από το YouTube, όπως κανονική αναπνοή, λαχάνιασμα ή βήχας, μετατράπηκαν σε φασματογράμματα.

Στη συνέχεια, η ομάδα μπλόκαρε ορισμένα μέρη του καθενός και ώθησε την τεχνητή νοημοσύνη να βρει το τμήμα που λείπει. Το αποτέλεσμα ήταν ένα μοντέλο θεμελίωσης, το οποίο, σημειώνουν οι ερευνητές, θα μπορούσε να προσαρμοστεί για χρήση σε μια μεγάλη ποικιλία εργασιών.

Στην περίπτωσή τους, οι ερευνητές το χρησιμοποίησαν για να μάθουν να ανιχνεύουν παθήσεις όπως φυματίωση ή COVID-19. Στη συνέχεια χρησιμοποίησαν μια τυπική κλίμακα για να συγκρίνουν την ακρίβεια του HeAR με τυχαίες εικασίες.

Βρήκαν ότι σημείωσε 0,739 σε ένα σύνολο δεδομένων και 0,645 σε ένα άλλο για την ανίχνευση COVID-19 και 0,739 κατά μέσο όρο για φυματίωση, κάτι που είναι καλύτερο από τα αποτελέσματα που έχουν ληφθεί από άλλα συστήματα.

Η ερευνητική ομάδα αναγνωρίζει ότι απαιτείται πολύ περισσότερη δουλειά, αλλά πιστεύει ότι η ακουστική εξέταση μπορεί κάποια μέρα να φτάσει στα ιατρεία, δίνοντάς τους ένα ακόμη εργαλείο για τη διάγνωση ασθενών με πνευμονικές παθήσεις.

Google News icon
Ακολουθήστε το Powergame.gr στο Google News για άμεση και έγκυρη οικονομική ενημέρωση!